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The hypothesis that human reasoning obeys the laws of quantum
rather than classical probability has been used in recent years to
explain a variety of seemingly “irrational” judgment and decision-
making findings. This article provides independent evidence for
this hypothesis based on an a priori prediction, called the quantum
question (QQ) equality, concerning the effect of asking attitude
questions successively in different orders. We empirically evalu-
ated the predicted QQ equality using 70 national representative
surveys and two laboratory experiments that manipulated ques-
tion orders. Each national study contained 651–3,006 participants.
The results provided strong support for the predicted QQ equality.
These findings suggest that quantum probability theory, initially
invented to explain noncommutativity of measurements in phys-
ics, provides a simple account for a surprising regularity regarding
measurement order effects in social and behavioral science.

attitude judgment | national surveys | quantum theory |
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Understanding human reasoning under uncertainty is funda-
mental for improving decisions about environmental poli-

cies, economic planning, public health, and many other impor-
tant areas. Fifty years of behavioral decision-making research
has established that humans do not always follow the “rational”
rules of Bayesian probability theory (1). Recently, a group of
psychologists and physicists have formulated new rules for hu-
man reasoning under uncertainty based on quantum probability
theory (2–4). This article reports a test of this theory based on
results from a quite different paradigm. We show that the
theory implies an a priori and precise prediction called the
quantum question (QQ) equality (5). This parameter-free pre-
diction concerns the effect of question order on human judg-
ments. The prediction was tested with the results of 70 national
representative surveys, most containing more than 1,000 partic-
ipants per survey, and two laboratory studies, that manipulated
question order. This article presents the QQ equality, its sur-
prisingly strong empirical support, and the key quantum princi-
ple, called the law of reciprocity, upon which the QQ equality
was mathematically derived. Finally, we explain why human
judgments follow quantum rules even if the brain may not be a
quantum computer.

The QQ Equality
To introduce the QQ equality, consider three examples of con-
text effects on answers to attitude questions in surveys, illustrated
in Table 1. These are the results of three Gallup polls reported
in a seminal article on question order effects (6). Each poll in-
cluded a representative sample of around 1,000 US adults. The
participants in one random half of the sample were asked two
questions in one order, and those in the other half were asked
the same two questions in the opposite order. In the first poll,
people were asked whether Bill Clinton was honest and trust-
worthy, and whether Al Gore was honest and trustworthy. In the
second poll, people were asked whether white people dislike
black people, and whether black people dislike white people.
In the third poll, people were asked whether or not Pete Rose

should be admitted to the baseball hall of fame, and whether or
not shoeless Joe Jackson should be admitted to the baseball hall
of fame. Each column of three two-way tables presents the results
from one of the three polls. The cells within the top two tables in
each column show the observed proportions for the four response
combinations for each question order. For each poll, a “context
effect” produced by the question order occurs when any of the
four proportions in the top table differs from its corresponding
cell in the middle table; these differences are shown in the bottom
table. A rigorous statistical test of the four context effects for
a single poll can be measured using a χ2 statistic (SI Text). As
shown by the χ2 statistic on the order effects, all three polls
produced large and statistically significant (p < 0.05) order
effects, but with strikingly different patterns. [Note that
these order effects go against the commutative property of
joint probability: pðyes A∩ yes  BÞ= pðyes  AÞ · pðyes  Bjyes AÞ=
pðyes  BÞ · pðyes Ajyes  BÞ= pðyes  B∩ yes  AÞ.]
Despite the different patterns of context effects displayed

in the first two polls in Table 1, they both reveal an interesting
common property: The sum of the context effects across the two
cells within a common diagonal is close to zero. We call this sum
the q value. (It is a mathematical property of any context effect
table that the q value produced by the main diagonal is always
equal but opposite in sign to the q value produced by the off-
diagonal; SI Text). Our quantum theory, presented later, predicts
that the expectation of the q value equals zero for these two polls,
E (q) = 0, which we call the “QQ equality.” For example, for
the first poll, the q value computed by summing the context effects
for the two off-diagonal cells equals −0.003; the corresponding q
value for the second poll equals −0.020. Psychologically, this

Significance

In recent years, quantum probability theory has been used to
explain a range of seemingly irrational human decision-making
behaviors. The quantum models generally outperform tradi-
tional models in fitting human data, but both modeling
approaches require optimizing parameter values. However,
quantum theory makes a universal, nonparametric prediction
for differing outcomes when two successive questions (e.g.,
attitude judgments) are asked in different orders. Quite re-
markably, this prediction was strongly upheld in 70 national
surveys carried out over the last decade (and in two laboratory
experiments) and is not one derivable by any known cognitive
constraints. The findings lend strong support to the idea that
human decision making may be based on quantum probability.

Author contributions: Z.W. and J.R.B. designed research; Z.W., T.S., R.M.S., and J.R.B.
performed research; R.M.S. and J.R.B. contributed new reagents/analytic tools; Z.W. and
T.S. performed data collection; Z.W. and J.R.B. analyzed data; and Z.W., R.M.S., and J.R.B.
wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.
1To whom correspondence may be addressed. E-mail: shiffrin@indiana.edu or wang.
1243@osu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1407756111/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1407756111 PNAS | July 1, 2014 | vol. 111 | no. 26 | 9431–9436

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
29

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407756111/-/DCSupplemental/pnas.201407756SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407756111/-/DCSupplemental/pnas.201407756SI.pdf?targetid=nameddest=STXT
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1407756111&domain=pdf&date_stamp=2014-06-24
mailto:shiffrin@indiana.edu
mailto:wang.1243@osu.edu
mailto:wang.1243@osu.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407756111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407756111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1407756111


www.manaraa.com

means that the number of people who switch from “yes–yes” to
“no–no” must be offset by the number who switch in the opposite
direction; likewise, the number of people who switch from “yes–
no” to “no–yes” must be offset by the number who switch in the
opposite direction. (The QQ equality is predicted to hold no
matter whether context/order effects occur on neither, one, or
both diagonals.) To our knowledge, no traditional psychology
theories impose this precise kind of symmetry constraint on
context effects.
There is no mathematical constraint that forces the q value to

be zero. [In general, the set of all context effects forms a three-
dimensional pyramid, but those that satisfy the QQ equality
forms only a triangular plane that lies within the pyramid (SI
Text).] For example, the third poll was selected to be pre-
sented in Table 1 because our quantum model predicts that it
should produce a violation of the QQ equality, and indeed, the q
value is big and equals −0.15. As discussed later, a key as-
sumption required for the derivation of the QQ equality is that
the questions being examined are asked successively with no
additional information inserted before or between questions. In
our examples in Table 1, the first two polls satisfied this condi-
tion, but the third did not. A rigorous statistical test of the QQ
equality can be computed using a χ2 test, which we call the q test
(SI Text). As shown in Table 1, as predicted by our quantum
theory, the q tests for the first two polls are not statistically dif-
ferent from zero, but that for the third poll is.
To assess the generality of the QQ equality, we obtained a

total of 70 national representative surveys that manipulated the
order of questions when they were asked successively. Most of
them included more than 1,000 respondents. In addition, we
included two laboratory experiments by the authors, each in-
cluding more than 100 respondents (SI Text). Of the 70 national
surveys, two of them were the polls shown in Table 1 (the third
poll in Table 1 was excluded for the reason mentioned above);
a third was another Gallop poll reported by Moore (6); and
a fourth was a classic study on context effects (7) that pro-
vided the complete two-way tables required for the q test.
(Unfortunately, most studies on context effects only report the
marginal proportions rather than the complete two-way table
required for conducting the q test. The remaining 66 national
surveys were all of the available studies conducted by Pew

Research Center on various topics during the decade of
2001–2011 that manipulated the order of two questions. (See
SI Text for more details about the 72 studies.)
The surprising nature of the results concerning the QQ equality

can be illustrated in several ways. Because the QQ equality pre-
dicts that the sum of the two diagonal entries is zero, it is in-
formative to plot one entry against the other. For each study,
we selected the diagonal producing the larger “order effect”
(defined as the sum of the absolute values of the two diagonal
entries). For example, as seen in Table 1, the larger order effect
for the Clinton–Gore poll occurs on the main diagonal, which
produced the pair of context effects x = −0.0726 and y = 0.0756,
and the size of the order effect for this pair equals 0.1482. For
the white–black poll, the larger order effect occurs on the minor
diagonal, which produced the pair of context effects x = −0.1205
and y = 0.1015, and the size of the order effect for this pair
equals 0.2220. Each of the 72 points in Fig. 1, Left plots these two
(x, y) values from a dataset: The horizontal axis represents the x
context effect, and the vertical axis represents the y context ef-
fect. More extreme order effects produce more extreme values
on the x, y axes. If we ignore the QQ equality, there should not be
any a priori constraints on the relations between the pairs, and
hence, there is no reason to expect any particular correlation
between them. However, according to the QQ equality, the
context effect in one cell of a diagonal should be exactly the
negative of the context effect in the other cell within the same
diagonal, and thus all these pairs should fall along a line with the
intercept of 0 and the slope of −1, producing a perfect negative
correlation. Fig. 1, Left shows the scatter plot of the 72 pairs of
context effects from all 72 studies. The straight line in the figure
is not a fitted regression line; instead, it is the a priori predicted
line with the intercept of 0 and the slope of −1. As shown, the
data points fall closely along this predicted line, and the correlation
r = −0.82 (r = −0.73, when two extreme values are excluded). The
surprising regularity illustrated in this scatter plot provides
strong support for the QQ equality prediction.
Another question concerns the possible range of q values. The

finding that the q value remains close to zero is interesting only if
the range of its possible values is much larger than the observed
q values. The third example of Rose–Jackson poll in Table 1
demonstrates that a large q value can occur, but it is important to

Table 1. χ2 results for three Gallup survey experiments reported in a seminal article on question order effects (6)

Observed proportions in the two question orders

Clinton–Gore White–black Rose–Jackson
Gy Gn By Bn Jy Jn

Cy 0.4899 0.0447 Wy 0.3987 0.0174 Ry 0.3379 0.3241
Cn 0.1767 0.2886 Wn 0.1612 0.4227 Rn 0.0178 0.3202

Gore–Clinton Black–white Jackson–Rose
Gy Gn By Bn Jy Jn

Cy 0.5625 0.0255 Wy 0.4012 0.1379 Ry 0.4156 0.1234
Cn 0.1991 0.2130 Wn 0.0597 0.4012 Rn 0.0671 0.3939

Context effects Context effects Context effects
Gy Gn By Bn Jy Jn

Cy −0.0726 0.0192 Wy −0.0025 −0.1205 Ry −0.0777 0.2007
Cn −0.0224 0.0756 Wn 0.1015 0.0215 Rn −0.0493 −0.0737

Test order effects
χ2 (3) = 10.14, p < 0.05 χ2 (3) = 73.04, p < 0.001 χ2 (3) = 67.19, p < 0.001

Test QQ equality
q = −0.003, χ2 (1) = 0.01, p = 0.91 q = −0.02, χ2 (1) = 0.56, p = 0.46 q = 0.1514, χ2 (1) = 28.57, p < 0.001

Each column presents the results from one survey. In each column, the top two-way table shows the observed proportions from one
question order, the middle two-way table shows those from the other question order, and the bottom two-way table summarizes the
context effects. Context effects were computed by subtracting the observed response proportion in each cell obtained in the AB (e.g.,
Clinton–Gore) order by that in the BA (e.g., Gore–Clinton) order.
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examine this issue for all 72 studies. For any observed table of
context effects, we can bound the q value by the size of the order
effect. Recall that we defined the size of the order effect in terms
of the diagonal with the larger summed absolute values of con-
text effects (e.g., 0.15 for Clinton–Gore and 0.22 for white–
black). The q value can possibly equal but cannot exceed the size
of the order effect defined in this manner (SI Text). If the order
effect is close to zero, then the q value must also be close to zero,
and sampling estimation error for both will cause them to be
approximately equal in size, so the q test is only interesting when
the order effects are well above zero. The relation between the
q value and the order effect can be described by their ratio: size
of the q value/size of the order effect. Because of the sampling
error, this ratio will necessarily be close to 1 when the order
effect is very small, but if the QQ equality holds, then this ratio
should drop to zero as the size of the order effect increases. Fig. 1,
Right plots this ratio for the 17 studies that produced an order effect
greater than 0.10. As predicted by the QQ equality and shown in the
figure, this ratio starts well below 1.0 when the order effect is small
and drops toward zero when the order effect becomes large; over
the entire range, the q value remains small.
Fig. 1 may provide a compelling illustration, but it does not

substitute for an appropriate statistical test of the null hypothesis
that the expectation of the q values is zero. We exclude the four
national surveys that were specifically selected from previous
studies because they found question order effects (although in-
cluding them does not change our conclusions below; SI Text);
and we analyze the distributions of χ2 statistics for order effects
and q values from the remaining 66 Pew surveys that were se-
lected without any bias for either test. As described before, these
include all of the datasets available from Pew in the past decade
that manipulated the order of two questions. On the one hand,
the χ2 distribution test for order effects produced a significant
deviation from the null hypothesis (p = 0.0004); on the other
hand, the χ2 distribution test for the q values indicates no sig-
nificant deviation from the null hypothesis (p = 0.4625) (see SI
Text for detail on the χ2 tests). Taken together, these results
show that across all 66 Pew datasets, there are significant ques-
tion order effects, and the QQ equality holds as predicted.
In summary, we have presented strong evidence that context

effects produced by the order of questions satisfy the QQ
equality predicted by quantum theory: (i) The context effect
from one cell of a diagonal is negatively correlated with that
from the other cell; (ii) the q value remains small even as the size
of the context/order effect increases; (iii) the q values do not
differ significantly from zero as tested by a large set of national
survey data on various topics collected in the past decade. We do

not know of any existing cognitive constraints that would pro-
duce these symmetrical results for context effects. It is possible to
construct a model that is narrowly constrained to satisfy the QQ
equality, but these constraints could also prevent the model from
accounting for order effects (see SI Text for two such examples,
one based on a model that assumes a probability of repeating the
first choice, and another that assumes an anchoring-adjustment
process). What is needed is a general theory for question order
effects that satisfies the QQ equality constraint. We hope that these
findings prompt researchers to look for alternative accounts. In any
event, we turn next to the basis for the quantum theory prediction.

Quantum Model of Measurement Order Effects
The discovery of the QQ equality was not an accident. This law
was predicted a priori from a quantum probability model of
human judgment (5). The model is simple and intuitive, and the
derivation for the test is general and parameter free. We begin
with a cognitive-process interpretation of the theory and later
present it formally. (See ref. 3 for a general introduction to
quantum probability applied to cognition and decision.)
The general idea may be stated in the following way. The

knowledge that a person has and uses to answer questions can be
represented as a very high multidimensional space, H. This space
can be described by a set of orthogonal axes (technically termed
“basis vectors” below) that is chosen to answer the questions.
Many cognitive theories represent knowledge as a vector of fea-
ture values, and one can think of the axes in these terms. For
example, if features are binary and there are 100 relevant features,
then each of the 2100 axes can be used to represent a different
pattern of ones and zeros where a 1 represents presence and a
zero represents absence of that feature (e.g., ref. 8). A person’s
beliefs about events are represented by a unit length vector,
generally at an oblique angle with respect to these axes. The
projection of the belief vector onto an axis can be described as
a belief that a feature is present. H does not change with the
question asked or with the context in which the question occurs,
but the way the knowledge in H is used changes with both fac-
tors. Of course, not all of the knowledge in H is needed to answer
a given question, and the knowledge that is to be considered
for answering a given question, A, is a subspace, SA, of H. The
knowledge used to answer another question, B, is represented
by another subspace, SB, which generally is of different di-
mensionality and is not necessarily aligned with the axes chosen
to describe SA. For example, if H is represented by a cube and SA
is the square plane on the bottom of the cube, then SB could be
another plane containing the cube’s major diagonal. Finally, the
probability of affirming an answer is determined by the square of
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the projection of the current belief vector onto the subspace
used to answer the question. [One might question the necessity
of computing probabilities based on squared length of
projections; however, Gleason’s theorem (9) proves that this is
the only way to assign an additive probability measure to all
subspaces of dimension greater than 2.]
It is useful to make this abstract description concrete by consid-

ering the following toy example. Imagine a survey respondent
who is asked questions about Bill Clinton during the period when
Clinton was the US president, such as “Is Clinton a respectable
leader?” and “Is Clinton doing a good job as the president?”.
Suppose for simplicity that only two binary features are used by
the respondent to answer these questions: The economy is doing
well (yes = 1, no = 0), and a leader should exhibit marital
fidelity (yes = 1, no = 0). The four combinations, (11, 10, 01,
00), form a four-dimensional space H, spanned by four basis
vectors, one for each combination. It is difficult to visualize
a four-dimensional space, and so we will assume that nonzero
beliefs (that is, 11, 10, and 01) are assigned by the respondent
only to the first three of the four basis vectors and zero (that is,
00) is assigned to the fourth basis vector. In Fig. 2, the first three
basis vectors are labeled X (corresponding to 11), Y (corre-
sponding to 10), and Z (corresponding to 01). Assume that the
answer “yes” to the question “Is Clinton doing a good job as the

president?” is satisfied by the property “the economy is doing
well,” and so it is represented by the plane C defined by the axes
X and Y. The orthogonal axis Z represents the answer “no” to
this Clinton question. How these subspaces are used depends on
the present context, including the way the person is thinking at
the time, which determines the weighting on pieces of in-
formation in the subspace. The current context and current way
of thinking is represented as a “belief vector” of unit length,
denoted here as S, located at some orientation with respect to
the X, Y, Z axes. One can think of this current belief as defined
by the current contents in the person’s short-term memory. In
Fig. 2, the initial belief state S is the largest on the 01 combi-
nation Z. As illustrated in Fig. 2, Upper, the probability of an-
swering “yes” to the question “Is Clinton doing a good job?” is
obtained by projecting the current belief vector S down onto the
subspace C, and squaring its length (which equals 0.33 in this
example).
Imagine a similar question is asked about Al Gore: “Would

Gore be a good next president instead?” Suppose the answer “yes”
to this Gore question is represented by the one-dimensional
subspace spanned by the vector G in Fig. 2, which lies at an
oblique angle with respect to the subspace C. Here, as illustrated
by the Clinton and the Gore questions, subspaces used to answer
different questions can have different dimensionality and at dif-
ferent orientations with respect to each other. Note that the
subspace for the answer “yes” to the Gore question is a ray that is
not contained in C (economy is doing well), and it is not aligned
with Z (economy is not doing well) either. Psychologically, this
represents the idea that the person prefers the answer “yes” to the
Gore question when there is uncertainty about the state of the
economy. As illustrated in Fig. 2, Lower, the probability of an-
swering “yes” to the Gore question is obtained by projecting the
current belief vector S onto G and squaring its length (which
equals 0.97 in this example).
Now we come to the heart of the model: context and order

effects. As time passes and new information arrives, the content
of short-term memory changes, and the belief vector changes
accordingly. When two questions immediately follow each other,
then after answering the first question, the belief vector that was
used to answer the first question changes to match the answer
just given. In other words, the belief vector realigns with the
current contents of short-term memory (which includes answers
to previous questions) and the perspectives that flow from those
contents. In geometric terms, the new belief vector used for the
second question is simply the projection of the initial belief
vector onto the subspace used to answer the first question, nor-
malized to have unit length. This new belief vector is then pro-
jected onto the subspace used for answering the second question,
and squared to produce the probability of a “yes” response to the
second question. Using this process, the probability of the se-
quence of “yes” answers equals the squared length of the projection
produced by first projecting the belief state onto the subspace for
answering “yes” to the first question, and then projecting the
updated belief vector onto the subspace for answering “yes”
to the second question. When the two subspaces lie at oblique
angles with respect to each other, the order of answering
the questions will change the projections and ultimately the prob-
abilities of the responses, and this is described as “noncom-
mutativity” in quantum theory. This is where a context ef-
fect arises.
This process is illustrated in Fig. 2 for the case in which the

answers to both questions are “yes.” Fig. 2, Upper shows the
process when the Clinton question is asked before the Gore
question. The initial state S is first projected onto the plane C
and then projected onto the ray G, and the squared length of the
final projection equals 0.17, which gives the probability of “yes”
to Clinton and then “yes” to Gore. Fig. 2, Lower shows the
process when the Gore question is asked before the Clinton
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question. The initial state S is first projected onto the ray G and
then projected onto the plane C, and the squared length of the
final projection equals 0.49, which gives the probability of “yes”
to Gore and then “yes” to Clinton.
It should be noted that not all subspace combinations will pro-

duce context/order effects. When the two subspaces are not at
oblique angles, the order of answering the questions (that is, pro-
jecting the belief vector to the subspaces) does not matter. In the
example above, it is assumed that the pair of subspaces “the
economy is doing well” and “a leader should exhibit marital fidelity”
do not produce context/order effects. Such cases are described as
“compatible” in quantum theory. In comparison, the cases with
order effects are described as “incompatible.” A psychological
theory could be developed to predict which question combinations
would be compatible or incompatible, but that is beyond the scope
of the present article (5). Such a theory is not needed for the
present purposes because the QQ equality prediction (discussed
next) holds for both compatible and incompatible situations. If
the two subspaces are compatible, then there are no context effects,
no order effects, and the QQ equality holds for trivial reasons.
Up to this point, we have merely presented a “geometric”

model description of the way that the quantum formulation will
produce context/order effects. The existence of such effects
might be explained by any number of cognitive theories and
processes. However, the quantum formulation predicts a partic-
ular relation among the observed context/order effects, the one
described as the QQ equality in the first part of this article. This
prediction follows from the “law of reciprocity” often discussed
in quantum theory (e.g., ref. 10, p. 34). The essential idea is that the
transition from one state to another depends only on the correlation
between the states as measured by their inner product. This pre-
diction will be laid out in the formal description to follow.
Now consider the general problem of computing answers to

a sequence of questions. Recall that each answer to a question is
represented by a subspace (e.g., a ray, a plane, a hyperplane) in
an N-dimensional vector space, and so a pair of answers to
questions is represented by two different subspaces. Each sub-
space corresponds to a “projector” that projects state vectors
onto the subspace. The probability of agreeing to question A
(denoted Ay and represented by subspace SA corresponding to
projector PA) and then agreeing to question B (denoted by By
and represented by subspace SB corresponding to projector PB)
equals the squared length of the result obtained by sequen-
tially projecting the prior belief state on the subspace for agreeing
to A and then on the subspace for agreeing to B, that is,
pðAyByÞ= kPBPASk2. The probability of agreeing to a question
B and then agreeing to question A equals the squared length of
the result obtained by sequentially projecting the prior belief
state on the subspace for agreeing to B and then on the subspace
for agreeing to A, that is, pðByAyÞ= kPAPBSk2. If the projectors
are commutative (i.e., PAPB = PBPA), then the subspaces are
compatible, and no order effects are predicted to occur. If the
projectors are noncommutative (i.e., PBPA ≠PAPB), then the
subspaces for the two questions are incompatible, and order
effects are predicted to occur.

QQ Equality Derived from the Quantum Model
If two questions, adjacent to each other, are asked in different
orders, then the quantum model of measurement order as de-
scribed above makes an a priori and parameter-free prediction,
named the QQ equality (see SI Text or ref. 5 or ref. 3 for proofs):

q=
�
pðAyByÞ+ pðAnBnÞ�− �

pðByAyÞ+ pðBnAnÞ�

=
�
pðAyBnÞ+ pðAnByÞ�− �

pðByAnÞ+ pðBnAyÞ�= 0:

The first line implies that the two main diagonal cells of the
context effect table sum to zero, and the second line implies that

the two off-diagonal cells in the context effect table sum to zero
(see Table 1 for examples). Intuitively, this means, the proba-
bility of having the same response to the two questions should
remain invariant across the two question orders; also the prob-
ability of having different responses to the two questions should
remain invariant across the two question orders. This equality
must hold even when context effects produced by the ques-
tion order occur so that, for example, pðAyBnÞ≠ pðBnAyÞ and
pðAyByÞ≠ pðByAyÞ. As shown in the proof (SI Text), this equality
must hold for any initial belief state and any pair of projectors
in any high-dimensional vector space. The QQ equality is still
predicted even if there are individual differences in the initial
belief state S, so that it continues to hold when we average across
individuals with different belief states (i.e., a mixed state; SI
Text). As we have shown, this precise prediction can be easily
tested empirically: If it holds, the difference in observed pro-
portions on the left hand of the QQ equality, defined as q, should
not statistically differ from zero as tested by a χ2 test for dif-
ference in proportions. As introduced earlier, this q test was
indeed satisfied for the large dataset of 66 national representa-
tive surveys on various topics.
Why does the quantum model predict the QQ equality? The

proof (SI Text) is based on a fundamental principle of quantum
theory called the “law of reciprocity” (10). The probability of
transiting from a projection on subspace SA to a projection on
subspace SB equals the probability of transiting from a pro-
jection on subspace SB to a projection on subspace SA. More
formally, for any given state vector S and two projectors PA, PB,
if T = PAS and V = PBS, then jhTjV ij2 = jhV jTij2. The latter
is true even when PAPB ≠PBPA. The derived QQ equality
provides a simple way to test this fundamental principle of
quantum theory.
A critical assumption underlying the derivation of the QQ

equality is that starting from a common state (technically, the
state is represented by a density matrix for a mixture of people
with individual differences), questions are asked back to back
without any information inserted in between so that two suc-
cessive projections are applied (either PAPB or PBPA) to the
common state. New information presented before or inserted in
between questions will change the state in different ways. For
example, if new information is presented in between questions,
then a change is produced by a transformation U′ for one type
of information, and a different change is produced by another
transformation U″ for a different type of information. Rather
than comparing PAPBS with PBPAS (as required for the deriva-
tion of the QQ equality), we are now comparing PAU″PBS with
PBU′PAS, and the equality is no longer expected to hold. (For
example, the Rose–Jackson poll in Table 1 violated this condi-
tion for our q test. A more complex quantum model that includes
the transformations U′ and U″ is required for this case.)
The QQ equality prediction from our model depends on the

assumption that the belief vector used to answer the second
question is the normalized projection used to assign probability
to the first question. We have looked at deviations from this
assumption: If the new belief vector is assumed to be some
proportion of the angular distance between the initial belief
vector and the resultant projection, the q value is not exactly
zero; but in all of the cases we have examined, it is very close to
zero (SI Text). This suggests that the prediction derived from our
quantum model may be even more general than claimed here
and may apply to a wider class of cognitive context effects. We
leave this possibility open for further research.

Discussion
The surprisingly strong evidence for the QQ equality supports
the quantum model of measurement order effects. It is part of an
accumulating body of research showing that quantum theory can
explain a wide range of behavioral findings that are paradoxical
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from a classical probability perspective (11, 12). Very likely,
the QQ equality is the strongest form of support because its
prediction is not dependent on parameter choices—other
applications of quantum theory to human cognition depend
on choosing parameter values to best fit data (as do most
cognitive models).
This support of the quantum probability approach leaves a

question: Can a classical brain give rise to behavior that follows
quantum principles (13)? Mathematical physicists have recently
provided a plausible account, showing that quantum behavior
can emerge when coarse measurements of a classical dynamic
system generate incompatible observables that result in un-
resolvable uncertainty relations and entangled correlations (14,
15). Scientists are still far from understanding how mental states
(such as judgments and decisions) emerge from the neural sub-
strates. It is too early to conclude whether or not quantum
physics plays a significant role in this emergence (16–19). Re-
gardless, even if the brain’s neural processes operate by classical
rules, quantum probability may provide a better description than
classical probability for the way humans reason under un-
certainty. Applications of both the QQ equality and a wide
class of psychological and decision-making tasks (20–24) support

this hypothesis, and they share the following conceptual bases:
(i) Human judgments, such as attitude judgments, are often not
simply read out from memory, but rather, they are constructed
from the cognitive state for the question at hand; and (ii)
drawing a conclusion from one question changes the context and
disturbs the cognitive system, which then (iii) affects the answer
to the next question, producing order effects, so that (iv) human
judgments do not always obey the commutative rule of Boolean
logic. If we replace “human judgments” with “physical mea-
surements” and replace “cognitive system” with “physical sys-
tem,” then these are exactly the same reasons that led physicists
to develop quantum theory in the first place. The QQ equality
presented in this paper shows that quantum probability theory,
used to explain noncommutativity of measurements in physics,
provides a strongly supported prediction for measurement order
effects in social and behavioral science.
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